«3100

ESD ACCESSION LIST,
ESD-TDR-45-168 ESTI Can No.___ AL 47492

Copy No. __ , ot / CYSs

(FINAL REPORT)

JaL=(
-
4

COoU '\
r E
-

RESEARCH ON COMPUTER-AUGMENTED INFORMATION MANAGEMENT

TECHNICAL DOCUMENTARY REPORT NO, ESD-TDR-65-168

MARCH 1965
", P ‘.D‘F:
D. C. Engelbort e ' COPY
Bonnie Huddart
SCIENTIFI 10N DIVISION

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscam Field, Bedford, Massachusetts

(Prepared under Contract Na. AF 19 (628)-4088 by Stanford Research Institute,
Menlo Park, California.)

DDC AVAILABILITY NOTICE

Copies have been deposited with the Defense Documentation Center. (DDC)

DISSEMINATION NOTICE

Copies available at the Clearing House for Federal Scientific & Technical Infor-

mation. (CFSTI) (Formerly OTS)

LEGAL NOTICE

When US Government drawings, specifications or other datc are used for any purpose
other than a definitely related government procurement operation, the government
thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the said draw-
ings, specifications, or other data is not to be regarded by implication or otherwise
as in any manner licensing the holder or any other person or conveying any rights

or permission to manufacture, use, or sell any patented invention that may in any
way be reloted thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ESD-TDR-65-168

(FINAL REPORT)

RESEARCH ON COMPUTER-AUGMENTED INFORMATION MANAGEMENT

TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-65-168

MARCH 1965

D. C. Engelbart
Bonnie Huddart

DIRECTORATE OF COMPUTERS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

(Prepared under Contract No. AF 19 (628)-4088 by Stanford Research Institute,
Menlo Park, California.)

ABSTRACT

This report presents results of a research and experimental project
in computer-aided information management., The report is itself a product

"

of the project: with the exception of "front matter," the entire report

was composed, edited, and produced with on-line and off-line computer aids,

For this project, the techniques of computer aids were applied to
two areas: task monitoring and program design. The processes and tech-
niques developed offer a promising beginning to computer-aided programming
design extending from initial specification to final debugging in a uni-
fied design record that grows and evolves to complete final documentation.
The processes and techniques also offer promise in increasing the produc-

tivity of individuals and groups of programmers.

Future work envisioned for information-management systems such as that
used in this study include program design records, external-reference

documentation, and user reference manuals.

REVIEW AND APPROVAL

This technical documentary report has been reviewed and is approved.

s 7 ‘ .
%;74\/{(:‘ -"?%~‘2’W\-} . (-ﬁ\ K, O\P'Q(“ \ el Cc-Qm_..?. S/

FRANK E., HERIN, JR. .«é'\ PAUL G. GALENTINE, JR.
1st Lt., USAF Col., USAF
Project Officer Director of Computers

Deputy for Engineering & Technology

iii

CONTENTS

ABSTRACT « &

LIST OF ILLUSTRATIONS .

FOREWORD

I INTRODUCTION . . .

II SUMMARY AND CONCLUSIONS

III1 PROGRAM-DESIGN
A, Basic Rules

. Examples . . .

B
C. Design and Modification Procedures
D

. Discussion . .

IV TASK MONITORING .

V FUTURE POSSIBILITIES

BIBLIOGRAPHY

RECORDS

Appendix A USER'S GUIDE, MAN-MACHINE INFORMATION SYSTEM

. iii
vii

5 ix
d 1
3 7
. 13
3 13
21

d 33
d 38
R 43
3 53
. 65
A-1

L e e P ——

ILLUSTRATIONS

Fig. 1
Fig., 2
Fig. 3
Fig. 4
Fig., 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Graphical Representation:
Overall On-Line System . . . o+ + &« o « & &

Linked-Statement Representation:
Overall On-Line System« « ¢« .« o .

Graphical Representation:
Main Executive Routine « « ¢« « . .

Linked-Statement Representation:
Main Executive Routine

Graphical Representation:
Display Frame Image Subroutine

Linked-Statement Representation:
Display Frame Image Subroutine

Graphical Representation:
Display Frame Image One Line at a Time . . .
(Part of Display Frame Image Subroutine)

Linked-Statement Representation:
Display Frame Image One Line at a Time . . .
(Part of Display Frame Image Subroutine)

Graphical Representation:
Sample External Devices and Format Any Inputs
(Part of Display Frame Image Subroutine)

Linked-Statement Representation:
Sample External Devices and Format Any Inputs
(Part of Display Frame Image Subroutine)

Sample of Status Report Memorandum Form .,

vii

o« o e 23
. . . 24
o« o . 25
. . . . %
. . . L] 27
o« o e 28
o e e e 29
L] . . 30
. o . 31

FOREWORD

This report summarizes the status of one project within a multiproject
program at Stanford Research Institute, aimed at increasing the intellec-

tual effectiveness of problem~solving human beings.

This report differs markedly from other Technical Documentary Reports
issued by Electronic Systems Divisions and its contractors. A glance at
the pages of this report will reveal many stylistic differences; not so
readily apparent are the reasons for the differences and the methods by

which the report was prepared.

Viewed as a whole, the program is an experiment in cooperation of man
and machine. The comprehensible part of man's intellectual work involves
manipulation of concepts--oftentimes in a disorderly, cut-and-try manner-
to arrive at solutions to problems. Man has many intellectual aids (e.g.,
notes, files, volumes of reference material, etc.) in which concepts are
represented by symbols that can be communicated and manipulated externally.
We are seeking to assist man in the manipulation of concepts--i.e., in his

thinking--by providing a computer to aid in manipulation of these symbols.

A computer can store and display essentially any structure of symbols
that a man can write on paper; further, it can manipulate these symbols in
a variety of ways. We argue that this manipulation service can be made
available to help the on-going intellectual process of a problem-solving
man; the service can be instantly available to perform tasks ranging from

the very smallest to the very largest,

To make the most of this service, we believe that man will signi-
ficantly alter his way of structuring and manipulating his working records
and his ways of thinking and working. These altered facets of his problem-

solving "system" will provide better coupling between the processes of the

mind and the services of the computer.

One promising approach to investigating a man-machine '"system'" would

be for a group to:

ix

FOREWORD

(1) Develop an initial set of experimental aids;
(2) Apply these aids to their daily work;

(3) VUse the experience thus accumulated to generate needs and
possibilities for improvement;

(4) Improve the system (with new conventions, computer processes,
methodology, etc.); and

(5) Apply the improved system in their daily work, using the new
experience to generate new needs and new possibilities for
improvement, and so on.

The process sketched above is essentially what is being done in this

multiproject program.

Our initial focus has been on computer-aided text® manipulation.

There are several reasons for this:

(1) Text is representative of our speech and much of our conscious
reasoning about nontextual records; it is the basic fabric in
which most of the interpersonal collaboration in system develop-
ment work such as ours takes place.

(2) Text is applicable as a representation of our thoughts and
actions at all levels of our working system (e.g., from
coding for the computer up to long-range planning for the
research program). This promises us a comprehensive inte-
gration of our aids into our way of working--an important
factor in our basic approach to exploring computer aug-
mentation.

(3) A coordinated, working system for usefully manjpulating text
is relatively easy to implement. For the same resources, a
wider collection of useful working aids may be implemented
for text than for graphics, for instance,

(4) An effective system for handling the text of working records
(planning, design, reference, etc) will provide a sound
structure in which later to embed other symbols e.g.,
graphics, mathematics, chemical formulas--(which, for the
most part, are actually quite isolated in the context of
our total working system).

By "text" we mean generally information represented by strings of
characters. This includes mathematical equations, programming state-
ments, etc.

FOREWORD

The vehicle for our study and experimentation has been a combination

of on-line and off-line systems.
The on-line system includes the following facilities:

® CDC 160A computer, with storage for 8,000 12-bit
words of core storage, 6.5 usec access time,
auxiliary storage provided by a 32,000-word drum
and one magnetic tape transport; paper tape
input/output facilities.

® CDC 220 character generator and DDI 16-inch monitoring
scope to provide on-line display.

® Invac keyboard, Saunders Associates light pen, and

other various graphical input devices for on-=line

operator input.
Using this system, about 18,000 characters of working data can be written
on the drum. Any portion of this material can be displayed on the CRT;
the current working size of the display is 16 lines of 63 characters each.
Basic manipulation operations of scan, move, copy, replace, delete, and
insert, can be performed on entities of character, word, line, or state-
ment. When manipulation is complete, a punched paper tape suitable for
printout on a Flexowriter is produced. This tape may also be re-entered
into the on- or off-line systems at any future time for further modifica-

tion or manipulation of the data.

The off-line system, which incorporates the CDC 160A and a Burroughs
5500, allows one to specify general manipulation of the text with straight-
forward commands punched on paper tape by a Flexowriter or Teletype.

These input paper tapes are processed to produce a fresh, cleaned-up
version of the input; the output of the off-line system is both hard copy
and revised paper tape. This output may, of course, subsequently be
processed in either on- or off-line operations. Using the off-line sys-
tem, substructures of text of any size can be deleted or moved with a

few simple commands, new statements and substructures can be inserted as
desired, and existing statements can be modified. Presently, turn-around

time for the off-line system is a half day or more. This makes it more

xi

FOREWORD

limited in its applications than the on-line system; however, some tasks--

such as updating operations--are easier to perform off-line than on-line.

We come, then, to the basic and visible difference between this report
and other ESD Technical Documentary Reports: With the exception of this
Foreword and other front matter, this report is produced entirely on the
on-line and off-line systems that are being described. Certain features
of this technique should be noted:

® Statements--be they subheads, phrases, sentences, or
paragraphs--are numbered and presented in hierarchical
order. These statement numbers are one '"handle" by

which a statement may be grasped for any of the opera-
tions performed on- or off-line.

® References, which appear at the end of the report, are
shown in the text by their computer mnemonic (e.g.,
Ref (SRI 1), rather than by the more familiar superscript
notation.

Detailed study of this report requires familiarity with the terms, con-
cepts, and computer-aid processes developed in this program; these are
contained in Ref (SRI 1), a copy of which is printed as the appendix to
this report.

Under Contract AF 19(628)-4088, ESD has sponsored study of struc-
turing and manipulating techniques for management of information--
specifically, the system-program design documentation. Other projects
supporting the program are a recently completed project for Air Force
Office of Systems Research [Contract AF 49(638)-1024], under which the
basic conceptual work was done, as well as the first off-line manipulation
work; a current project for the Advanced Research Projects Agency
(Contract SD-269), under which work on information structuring, basic

working methodology, and the higher-level manipulation processes in the

xii

FOREWORD

on-line system are being done; a current project with National Aeronautical
and Space Administration (Contract NAS 1-3988), under which display-control
techniques that represent the foundation of the on-line manipulative sys-

tem are being studied and developed; and an internally-sponsored project at

Stanford Research Institute, under which the current off-line system was

developed.

xiii

SECTION I -~ INTRODUCTION

1 BASIC ROLE OF PROJECT WITHIN THE PROGRAM

la To explore the possibilities of using closely coupled
computer aids for performing significant
information-management tasks, by developing and
experimenting with improved information-management
techniques for our own everyday use within the program.

2 THE FORMULATION OF OBJECTIVES IN THE ORIGINAL PROPOSAL

2a. The specific obJectives of the proposed study are to
develop systems of hardware, software, concepts, and methods
that will permit the on-line operator to:

2al Analyze amd structure information in a quantity and
variety that significantly exceed the carability of a
human not ailded in this fashion.

2a2 Update the information structure in response to more
rapid changes in informetion or user need than he could
previously have accommodated,

283 Retrieve amd compile significant information from
the structure more quickly and comprehensively.

2b There has been one apparent qualification of this
original formulation.

2bl Our work has been to harness computer alds for the
type of information needs sketched above; but we have not
restricted this to on-line aids--we have also explored
and gained working experience with off-line man-computer
cooperation. The program-design documentation study
discussed in Section IV is one example of this; this
report itself is another.

2b2 The Information-Management project has been
rarticularly stimulated and aided by the potentials
opened up by the operation of our off-line
text-processing system, Our formulation of ob jectives
mst now take shape within this new set of needs and
potentials,

2¢ The obJjectives we pursue in this Informetion-Management
project are best conceived as a particular kimd of
user-system research, in the sense described in Ref(OSR2).

SECTION I -- INTRODUCTION

2cl The total context is "the many coordinated aspects
of human intellectual effectiveness,"

2c2 The particular aspects we explore are ''the
coordinated set of concepts, conventions, methods, and
skills" which enable a human problem-solver to harness
computer ailds in managing his working information.

2c3 This includes schemes for structuring information,
articulating it in special ways to bring out its various
kinds of significance (e.g., see Section III); techniques
for modifying, updating, and consulting this body of
structured information; plus the human procedures,
methodology, and skills that knit these together into an
effective user system,

3 METHOD OF APPROACH

3a The overall basic method of approach throughout this
project has been:

3al To take real, live information management problems
from our own working environment.

3a2 To derive tentative solutions that utilize the
hardware and software products of the other proJjects in

the program.

3a3 To implement these solutions in rough, preliminary,
experimental versions, amd try them out, in order to gain
vorking experience as a basis for evaluating their
functional weaknesses and potentials,

Ja4 To continue from this point, modifying amd adding to
the system to evolve continually better solutions and to
expand the scope of problems being handled,

30 This basic method of approach has two unusual
characteristics:

3bl We must largely follow where the prcblem leads.
This is exploratory research, without a predetermined
itinerary; the needs brought out in our changing
environment influence our course,

3b2 We must coordinate closely with the other projects
within the program, by developing, applying, amd testing
products they can use, and using the products they
provide, The changing possibilities of our working
environment influence our course,

SECTION I =-- INTRODUCTION

3¢ The initial, more specific formulation of this general
method of approach, governing our work in the earlier stages
of the project, had two aspects.

3cl The project was to assume responsibility for
specify ing and monitoring, in an overall way, an
information-menaging scheme for the working information
involved throughout all the projects in the program.
This would include specifying the structuring
conventions, the terminology, and the procedures of
information management to be followed by all our
projects,

3c2 Within some smaller "focal" area (representative in
its dimensionality, but more manageably delimited in its
scope), we would as rapidly as possible specify, design,
implement, and gain working experience with an actual
Information-management subsystem incorporating our
computer aids,

3c2a This subsystem was to be conceived as a
balanced, coordinated set of information formats and
structuring conventions, terminology and notations,
amd procedures for entering information and
maintaining useful up-to-date records that could be
quickly anmd flexibly consulted.

3c2b We would select an area where the quantity,
complexity, and variety of information, and the
functional requirements, were small enough so that we
could develop useful models amd evaluative techniques.

4 EVOLUTION OF OUR WORK

4a The specific area initially selected for the "focal"
stuly was a body of status information about the programming
work in progress. A trial scheme of task definition ard
status reporting was implemented and operated for several
months (see Section IV),

4al We found that for this ever to become a really
useful body of working information we would need far more
detailed task descriptions, and easier ways of modifying
them.

4a2 Tasks are hierarchical in nature--to give a detailed
description of a task usually involves isolating its
subtasks, together with the resources, constraints,
method of approach, etc.

SECTION I -- INTRODUCTION

423 The "linked-statement" structuring conventions
(which had meamwhile been developed within the ARPA,
NASA, ard internally sponsored proJjects) adapt very
naturaelly to representing these types of relationships.
For instance, the linked-statement structuring of a
task-description allows analysis to whatever depth might
be relevant or useful in the particular case,

4a4 We soon found that for purposes of analyzing status
the best programming-task description was the description
of the current state of the program design. But
obviously this type of evolving record would be useful
for other purposes than as an input to a task-monitoring
system,

4a5 It seemed likely, for instance, that these methads
of depicting the design records could prove very powerful
for documentation of our (and others') programming-system
development work.

436 The fast and efficient computer processes for
modify ing such evolving structures promise to make
updating these records easy amd quick enough so that the
system designer or programmer can actually do his
designing work (including his "scratch work") this wey.

4b Our more recent activity has investigated this area in
spacific detail, as well as re-examined our overall
information-management system in the light of the computer
aids which other projects had made available to us., These
new structuring conventions and processing abilities proved
to be well sulted for describing computer program
structures, (Our multilevel program-design explorations are
described in Section III.)

4bl System-program documentation has offered a good
workout for the new capabilities; it provides variety and
complexity enough to test the conventions and processes,

4p2 We have developed amd (to some extent) refined a
reasonably adequate and useable set of descriptive
techniques for recording complex program structures,
enbedding the relevant kimds of supplementary information
and commentary at the appropriate points. The
informmtion is formatted, tagged, and linked in special
ways to make this a usefully articulated record, and give
aid in comprehension.

403 We have also begun to explore how these same

SECTION I -- INTRODUCTION

structure amd processing conventions could be used for
developing a program description while the program is
being designed amd written--to incorporate descriptive
mterial about data structures; record design
considerations and decisions; explain special coding
devices; and so on. We hope to develop a programing
methodology Iincorporating these aids throughout the
entire design process, providing an evolving up-to-date
record of the work in progress. With very little
reworking, the design record would then become the final
documentation of the finished program--an unusually
complete and useful documentation.

4c The new structure and processing aids will also be
valuable to us in service of other information-management
needs:

4cl They provide a far more flexible and useful
framework for our group documentation than the '"file
folder" descriptors we worked out earlier in the project;
a framework for exchanging amd merging information, amd
for maintaining an up-to-date central file of "reference"
documents (such as our supplementary reference, "SRI1,"
printed as an Appemiix to this report).

4c2 They can be applied within our external citation
files and documents, in order to search and classify the
contents of those files, and to compile materials for
special purposes.

4c3 They provide the required tools for devising a
realistic and mobile scheme of status-reporting amd
task-definition, which would allow both a more effective
coordinating of group activity and a more accurate (and
less burdensome) monitoring of individual progress.

SECTION II -- SUMMARY AND CONCLUSIONS

1 The dominant features of the work reported here are that the
work 1tself is part of an experiment; within this experimental
environment, the work was coordinated with several other
projects; and there was a common aspect of "bootstrapping”
involved in their coordinated approach.

la VWe are experimenting with computer-aided working
techniques as a way of exploring thelr potential valuve,
Thus, our main product 1s a report of experiences with the
aids we heve developed amdl an assessment of their
potentials.

b This project is coordinated with others, each of which
is developing aids for some aspect of owr working system,
mearwhile using and evaluating its own developments together
with those of the other projects.

le This use and evaluation takes place by applying the
developed tools to our everyday work. Thus, the products of
our work are used by us to improve our ebility to do our
work (i.e., we are "bootstrapping").

lel This report is an example of both coordination amd
bootstrapping.

lc2 The report was composed and modified by means of
computer aids anl produced directly on the mat from
computer output.

1c3 The linked-statement form (the "outline"
appearance), which is one aspect of our development, is
integral with our way of working; we do all of our
writing this way.

2 For this projJect, two particular applications of these
techniques were taken up: task monitoring and computer-program
design.,

2a The task-monitoring activity was aimed at providing a
supervisor with information about task description and
status that would enable him to assess the state of a
developing system.

2al 1In this early activity, computer aids did not enter

into the collection of this information==filled-out forms
and clerical procedures were used.

2aZz The computer aids were to be involved in the

SECTION II -- SUMMARY AND CONCLUSIONS

analysis of this information, mostly to be done by
Information-Management researchers or by the programming
supervisors,

2a3 More complete descriptions of the tasks was needed,
which led to the development of techniques for
programming-task description that turned out to be very
promising in their own right for providing comprehensive
design records.

2a4 Consequently, the task-monitoring activity became
overshadowed by its offspring--by the burgeoning
possibilities that emerged in connection with the
program-design activity--anmd is likely to remain dormant
until the more promising possibilities of the
program-design activity have been developed.

2a5 When we turn our attention back to the
task-monitoring problem, the kinds of structuring and
processing of design records that are developing in the
present design activity should provide an almost ideal
data base and techniques with which to derive task
description amd status information.

2b The program-design activity is aimed toward developing
the forms for the design records and the processes for
manipulating them. These are to provide a coordinated means
for recording all relevant design information, and an
assoclated means for effective ccmputer-aided modification
of these records,

2bl We have developed two types of computer aids for
mnipulating these design records: an on-line system
that uses a cathode-ray-tube display for instantaneous
study and modification of records, and an off-line system
that provides hard-copy printer output of a modified
record after a normal job shop turn-arourd delsy.

2bla Special conventions for naming, linking, and
tagging accommodate the particuler aspects armd
relationships involved in a program-design record.

2blb For example, a list of statements may represent
a complete flow diagram of a process; each subprocess
is represented by a statement., Branching and
subroutine calls are handled by special types of
inter-statement links,

Z2ble Use of this form is independent of the
programming language used; any such language may be

SECTION II -- SUMMARY AND CONCLUSIONS

erbedded within this form with equal advantage.

2bld We find that within this one
consistently-structured design record we are sble to
accommodate any of the Information that is commonly
found on program listings, flowcharts, data-formet
tebles, and written specifications and constraints.

Zbldl There can be a particular place in the
record for every particular kind of relevant
Iinformation.

2bld2 The structure is arbitrarily expandable,
serving well the disorderly, cut-and-try process of
design,

2ble The form is particularly amenable to computer
manipulation; it also provides natural concepts and
operations for a humn to use in designating such
manipulation.

2b2 The processes for working on this integrated form
allow the designer to add or modify with such speed and
flexibility that such & record really could keep up with
the cut-ard-try deslgn processes, always representing the
current state of the design.

2b2a The on-line system is fast and flexible enough
to represent a promising beginning of effective
computer-aided programming design through all the
stages, from initial specification to final debugging.
The unified design record would grow and evolve to
"become the complete final documentation at the emd of
the process. This approach can integrate with any of
the emerging developments in on-line compiling and
debugging.

2b2b The off-line system offers many of the same
advantages. In addition, it can be used on any
conventional (Job-shop type) computer system. The
basic techniques of form amd manipulation for
program-design records are thus available to almost
any programmer,

Zb3 Provocative possibilities for on-line aids in
debugging emerge in connection with this form of design
record:

2b3a Quickly anmd comprehensively scanning amd
studying the record--e.g., scanning at any desired

SECTION II -- SUMMARY AND CONCLUSIONS

level of detail, automatically locating special points
of interest by context, easily following
cross-reference links,

2b3b Easily designating trial execution of process
blocks of any level, with flexible, comprehensive
features for tracing ard trapping and for portraying
the results.

2b3c Keeping track of hypotheses, and of evidence
needed arm evidence cbtained.

¢b3d Deducing the source of a bug from the gathered
clues.

Zb3e Quickly looking up relevant reference
inforretion--such as system conventions, equipment
characteristics, etc.

3 From our experience to date, we conclude that these
design-record techniques offer promising possibilities in the
following ways:

3a The individual programmer 's productivity can be
increased if his way of working can usefully incorporate an
efficient record-keeping system, especially if these are
used in conjunction with computer aids for design amd
debugging.

3 The productivity of a cooverating group of programmers
may be increased if each makes good use of the unified
record-keeping system, The working exchanges of information
among them and with their supervisor can achieve both the
uniformity provided by stardardization, amd the speed amd
flexibility provided by computer aids appliceble
comprehensively over the gamut of relevant recorded design
information,

3l Such a group inevitably changes its task
specification during the design process. The new
techniques promise to increase the speed and flexibility
with which such changes are accommodated.

3¢ This working methodology offers a form of
"self-documenting system development."

3¢l The unified design record, enmbodying all the
relevant specifications, considerations, etc., will
evolve through all the stages of the design process,
becoming the complete final documentation of the system,

10

SECTION II -- SUMMARY AND CONCLUSIONS

3d In subsequently changing a system that has been designed
and documented in this way, these same techniques allow naw
design possibilities to be evaluated or implemented quickly
amd completely--with "self documentation" obtaining for the
system molification as well,

4 Our work to date brings us to the following conclusions
about our general approech:

4a As an exploratory tactic, bootstrapping is
simultaneously provocative, frustrating, and well
worthwhile,

481 Depending upon our newly-developed techniques in our
own work injects a down-to-earth realism into the needs
and possibilities with which we concern ourselves,

4a2 While the total form of the new working method is
being developed, the many imperfections ard
iInconsistencies are a continual source of frustration,
even though they provide the necessary realism,
orientation, amd stimulation.

4p An important hypothesis upon which the experiment is
based is that the changes in working methodology amd
language (the form of one's working record), required for
effectively harnessing closely-coupled computer services,
would prove at least as important amd worthy of design
attention as would the development of those computer
processes themselves,

4c The linked-statement form is only a primitive first step
in structuring our working records. But its impect upon our
ways of thinking and working, upon the computer processes we
have developed aml the wealth of future possibilities that
these stimilate, leads us to feel that this "methodology and
language" hypothesis has been verified.

4d There are promising possibilities for future exploration
in connection with program-design records,
external-reference documentation, and user reference
menuals, We hope to pursue these applications in future
work within the program,

11

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

1 INTRODUCTION

la The purpose of the techniques described below is to
provide complete and consistent means for representing all
of the important facts, considerations, relationships, etec.,
that could usefully be entered into the working record of a
program design. The rules are not intended toc force the user
into rigid, formalized ways of recording his work; we
introduced conventions and formalisms only where we felt
that there was a definite advantage to the user,

I The discussion uses the following definitions amd
terminology :

Ibl The entire set from Ref(SRI1l) is assumed.

b2 Let "PRC ST1" ("process of ST1") represent the
actual process represented and described by STI.

2 BASIC RULES

2a All description is written in structured-statement form,

2b A design description of a computer program contains
several distinct types of statements:

2bl Describing an initial specification, requirement, or
constraint.

2b2 Describing the purpose am usage of the finished
program, for instance to someone who wants to use the
program,

2b3 Describing a convention, rule, or definition to be
used within the design document to facilitate
description.

2b4 Describing the data structure,

2b5 Representing anmd describing an actual program
process:

2bSa An actual object-code statement for the computer
(rare).

ZbSb A source-code statement, for a translator

13

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -~ BASIC RULES

program.
2bS5c A higher-level statement, in whose substructure

all the lowest-level statements are of either of the
above types.

2b6 Describing special tricks or tactles in design.

2b7 Describing some aspect of a particular processing
state,

2c These types of statements can be distinguished in
several ways:

2cl By the text content of the statement.

2c2 By the nature of the name given the statement.

2¢3 By a special tag in the statement.

2c4 By being untagged--in which case the type is assumed

to be the same as that of the first higher source

statement that 1s explicitly tagged.
2d We deal below with only the data- amd
process-description types, which represent the greatest need
ard possibility for improving documentation of programs.

2e Special conventions for process description are as
follows:

2el The starmdard conventions from Ref(SRI1) are assumed.

2e2 Tags for process structures--if the given tag
appears in ST1l, it has the assoclated significance:

2e2a %*p (for process): STl represents and describes
a process,

2e¢2b *c (for comment): used two ways:

2e2bl Appearing at the head of ST1l, after location
nurber and name (if any), *c designates that ST1
ard its substructure are comment rather than
process statements.

2e2b2 Appearing in the body of ST1l, after some

relevant process designation, *c indicates that the
remaining text of ST1 (or, up to an *o tag) is to

14

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

be treated as comment information. STl arnd its
substructure are still treated as process
statements.

2e2c *d (for data): STl represents and describes
data that are to be stored in the computer, as opposed
to processes to be stored anmd executed.

2e2d *sr (for subroutine): STl represents a closed
subroutine (and must therefore be named).

2e2e *o (for OSAS): The remaining text in ST1,
between the *o tag and the end of the statement, is
composed of lines of OSAS code, formetted as for the
assenbler,

2e2f *1 (for incomplete): The sublist SBL-ST1 is
incomplete-- i.e., it does not describe PRC ST1
completely.

2e2g *ib (for incomplete below): At least one
statement in SBL STl has either an *1 tag or an *ib
tag, or both., (Use not mandatory.)

2e3 The norml control sequence (i.e., process flow when
not directed by a TO or CALL link) is as follows:

2e3a Process control normelly passes from one
statement, ST1l, to its 1list successor, SCC ST1,

2e3b Control bypasses any non-process (e.g.,
*c-tagged) statement.

2e3c Control may not pass (by any means) to a
statement having a *d tag.

2e3d Control may never pass to an *sr-tagged
statement by any other means than a CALL link,

2e4 Branching operations are as follows:
2ed4a A link "TO(NML1)" appearing in a statement
indicates transfer of control to the statement named
NM1l, urder whatever comditions are specified in the
preceding text of that statement.

2edb If no comdition is specified in the preceding
text, transfer is unconditional.

2e4c If the specified conditions are not met, the

15

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

link is ignored and control passes on *hrough the rest
of the statement.

2eS Subroutine calls are treated as follows:

2eSa A link "CALL(NM1)" appearing in a stetement
indicates a Jjump-return subroutine call to the
statement named NM1, under whatever conditions are
specified in the previous text of the statement.

2eSb If no corditions are specified, the Jjump is
unconditional.

ceSc If the specified conditions are not met, the
link is ignored, and (as when control returms after
subroutine execution) control passes on through the
rest of the statement.

2e6 Sublists of process statements are treated as
follows:

2eba If ST1 1s a process-description statement, its
sublist (SBL ST1l) represents a complete description of
PRC STl as a set of lower-order processes, each
represented by a statement of the sublist,

2e6b The first process statement of SBL STl to which
control will pass 1is:

2e6bl The first process statement on the list, if
ST1 has no name,

2e6b2 (X) The process stetement bearing the same
name as does ST1, if STl has a name,

2e6b3 *c If control can arrive at STl by passing
through the previous statement (i.e., not via a
TO(NAM ST1) 1ink), then control must pass first to
the first process statement of SBL STI,

2ebc Any nonprocess statement in SBL STl must be
explicitly tagged; process control will then bypass
1t

2e6d If process control passes SBT STl (in other
words, to try to go to its (nonexistent) list
successor), this is an implicit designation that the
process PRC STl is finished, and that control is to
pass from ST1 to its successor, SCS ST1.

16

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

2ebe Also, designation in SBL STl of control transfer
from ST1 to SCS STl mey be accomplished by means of a
TO(NAM SCS ST1) link in any (or several) of the
process statements of SBL ST2.

2e6f In SBL ST1, designation of control transfer to
statemrnts other than SCS ST1 must be mede with
TO(NM1) 1links.

2e7 Multiple instances of identical TO(NM2) links may
represent a given program-control branching path:

2e7a These must appear at each successive level below
the highest-level instance, to represent the same
branching operation in ever-more detailed descriptive
context.

2e7b In a properly formulated program description,
the statement STM NM2 will always be in the same 1list
as the highest-level instance of the TO(NM2) link.

2e8 Multiple names, end link following, adhere to these
conventions:

2eBa Under certain comditions, a nunber of speclally
related statements may have the same name,

2e8a1 If ST1 is the lowest-level statement of a
group of statements thus having the sam* name, then
the others must lie on the source chain of ST1
(i.e., they are either SRC ST1; or, SRC(2) ST1; or,
etc.). See(X) in the discussion of process
sublists above.

2e8p Statements bearing a common name represent the
same process point, as found at different levels of
description.

2e8c It thus makes no difference, in any sense of
correct process execution, to which such statement one
assumes control to transfer via a link to that name.

2e83 But to one studying the process structure anmd
wvanting to follow a link referring to a multiply-used
name, it does make a difference., He should transfer
his attention according to the following rules:

2e8e Assume that STl contains a link to NMl; that NM1

is the name of statements ST2, ST3..., ST4; and that
ST2 is the lowest and ST4 the highest of these

17

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

statements (on the source chain from ST2).

2e8f The single general rule: Choose the first of
these statements encountered in following the bridge
chain from ST1 to ST2.

2e8g If this 1s a "reentrant link" (i.e., a branch
from within a process back to the beginning of the
process, or a recursive self-calling from within a
closed sibroutine), the statement thus chosen will be
the bridge node between ST1 ard STZ.

2e8h If it is not a reentrant link, then the chosen
STM NM1 will ve ST4, the highest-level of the chain of
NMl-named statements.

2e81 If it is a TO(NMl) link in a properly composed
program description, then (besides the foregoing) the
chosen STM NM1 will also always lie in the same list
as the branch node between STl and ST2 (and often will
be the branch node).

2e8j If ST1 contains a TO(NAM ST2) link, the
following rules affect the allowable value of LCN ST2:

2e8j1 DPT LCN STZ2 = D2 must be equal to or less
than DPT LCN STI1.

2c8j2 FLI LCN ST2 = FLI LCN STl for 1 from 1 to
D2-1. For a reentrant branch, equality also will
exist vhen 1=D2Z2.

2¢833 In other words, LCN ST2 can differ only in
its last field (armd may be equal there) from the
string of fields that 1s derived by truncating LDN
STl to a depth D2. Equal last flelds imply a
reentrant branch.

2e8j4 For example, if LCN STl = 3b»4dS5S, then some
of the allowable values for LCN ST2 are 3b4de,
3b4g, 33, 34, amd 6; and some disallowed values
are 334d2a, 3d4g2, 3b3f, 3d4 amd 6b,

2e9 Converse links exist; if statement STl links to
statement ST2 with link XXX(NAM ST2), this may be
explicitly noted in statement STZ by the converse link
-XXX(NAM ST1)., This is a complete and standard link in
its own right.

2f Discussion of process structures:

18

SECTION III -- PROGRAM-DESIGN RECORDS
PART A -- BASIC RULES

2f1l Each list or sublist may be thought of as equivalent
to a flow chart, ani therefore must provide a process
description that is complete at its particular level of
detail. In such a representation, every point where two
or more process-control paths may converge must be
associated with the start of a new (named) statement.

2f2 Concise and consistent form are important in
synthesizing, composing, modifying, and studying the
program description.

2f2za This applies to form at all structural levels:

2f2zal A several-character term within a statement,
its significance and coding.

2f2a2 The layout and terminology of statements
representing often-occurring types of processes or
descriptions,

2f2ad The roles, role-marking, and ordering of
statements in lists having common types of purpose.

2f2a4 The roles, role-marking, amd structuring of
statements and lists in structures having common
types of purpose,

2f2a5 The types of links used, and the codes that
designate these types,

2f2ab The types of tags used, their encoding, and
their placement within statements,

2g Suggestions:

2gl Tag all nonprocess statements with *c (for comment)
initially. We can supply other tags later to
differentiate between significant categories of such
statements,

2g2 Locate subroutine descriptions wherever it seems
most appropriate.

2g2a Subroutines can be categorized arnd grouped, with
several levels above the ¥sr-tagged statements, to
possible advantage,

2g2b This should not be taken as a rule for all

19

SECTION III ~~ PROGRAM~DESIGN RECORDS
PART A -~ BASIC RULES

subroutines--e.g.,, a subroutine used only within one
process might better be described urder an *sr
statement within the list.

2g3 Parameter-state designation, showing parameter PR1
to have value VL1 at a given point in the process, my be
done by writing PR1:VL1,

2g3a Use no spacing on either side of the colon.

2g3b Either punctuation or spacing must appear at the
end of the character string designating VL1,

2g3c The designation of VL1 may be abbreviated or not
according to preference, but using one urbroken
character string may avold anbiguities of statement
content,

2g3d Reserve "a" to mean "contents of accumulator,"”
vhen used as PRI,

2g3e Ixamples: index:3, Flag:neg, a:nonzero, etc.,

where the first of each pair is an already-defined
rerameter,

20

SECTION III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

1 In this part we show that computer programs, commonly
represented in flowchart form, can be equally well represented
in linked-statement structure, using the basic rules presented
in Part A above.

la We demonstrate this by presenting graphic flowchart and
linked-statement structure representations of our on-line
system,

Ib We start with an overall view of the on-line system; we
subsequently examine segments of this system,

2 Overall On-Line System

2a The overview of the on-line system is represented in
graphic form in Figure 1. The conventions used in this and
succeeding flowcharts are essentially those presented in
Ref(ACML).

2al A or ¥V represents a Jump in the logic to a
named location. The direction of the arrow indicates
where this name may be foud on the flow charts,

2ac D is the terminal symbol for subroutine
entrances amd exits,

2b The overview of the on-line system is represented in
linked-statement form in Figure 2.

2c The statement nunbers and names from Figure 2 are
repeated outside their correspording flowchart symbols in
Figure 1.

5 The Main Executive routine is shown in graphic amd
linked~-statement forms in Figures 3 amd 4, respectively.

4 The Display Frame Image subroutine, called from within the
Main Executive routine, is shown in graphic and
linked~-gstatement forms in Figures 5 amd 6, respectively.

S The routine that displays the frame image one line at a
time, which is part of the Display Frame Image subroutine, is
shown in graphic and linked-statement forms in Figures 7 and 8,
respectively.

6 The routine that samples the external devices and formats

any inputs, which is part of the Display Frame Image
subroutine, is shown in graphic and linked-statement forms in

21

SECTION III -~ PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

Figures 9 and 10, respectively,.

22

SECTION III -- PROGRAM-DESIGN RECORDS
PART B ~~ EXAMPLES

=

2 (START)

INITIALIZE
SYSTEM

3 (DCh)

INITIALIZE
EXECUTIVE
LOOP

4 (DC)

MAIN

EXECUTIVE
DECODE AND
—— EXECUTE USER [t owm= oo — e
COMMANDS

Ta- 40871

FIG. 1 GRAPHICAL REPRESENTATION: OVERALL ON-LINE SYSTEM

23

SECTION III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

O *p Online System

1 (ABBREVIATIONS) *c Abbreviations used in this writeup:
la "char" means "character code"
Iy "FWA" means "first-word address"
lc "LWA" means "last-word address"

2 (START) Initialize system.

3 (DCI) Initialize executive loop.

4 (DC) (Main executive loop) Decode and execute user commnds.
To(DCI).

FIG. 2 LINKED-STATEMENT REPRESENTATION: OVERALL ON-LINE SYSTEM

24

SECTION III
PART B -- EXAMPLES

(BEGIN)

4a (DC)

YES

de

CALL
APPROPRIATE
PF

4f

REFORMATTING
NEEDED?

DI STACKS EACH
SUCH CHARACTER
FOR LATER
PROCESSING ALSO

RETURN A:CHAR

SPACE IS THE
TERMINATOR FOR
A COMMAND-
IDENTIFIER STRING
OPERATES ON THE
6 CHARACTER STRING

LOOK UP COMMAND | _:EKE ?Y_Dl——
IN TABLE OF

VALID COMMANDS, RETURN A:INDEX

RECORD INDEX OF
ENTRY {F FOUND

WHICH MEMBER IS
SELECTED IS

DETERMINED FROM
THE INDEX OUTPUT
FROM THE CL (6)

DISPLAY FRAME
IMAGE AND GET
A CHARACTER

SUBROUTING
ot FCGEED |
PF GROUP R g RETURN |
s wni U |
COMMAND (LreToRn)
CE GROUP SIS RETURN
COMMAND EXECUTE
GROUP SETS FLAG
IF REFORMATTING
2qict o R R
15
e G
DATA R

Ta-ea007-2

FIG.3 GRAPHICAL REPRESENTATION: MAIN

EXECUTIVE ROUTINE

25

-~ PROGRAM-DESIGN RECORDS

SECTION III1 -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

4 (DC) (Main executive) Decode and execute user commands, To(DCI).

4a (DC) Call(DI), to display the frame image and get a
character from the external devices, *c DI stacks each
such character for later processing, and also returns
with i1t in the accumlator.

4 If the character is not a space, to(DC). *c Space
is the terminator for a command-identifier string.

4c Call(CL), to identify command and obtain parameters.
*c Operates on the character string stacked by DI.

44 If not a valid command, to(DCI).

4e Call the appropriate subroutine (from "parameter fetch"
group) to obtain the command's parameters.

4f Call the appropriate subroutine (from "command execute”
group) to execute the command. %*c The "commend execute'
subroutine sets a flag if reformmtting is needed.

4g If data does not need reformatting, to(DCI).

4n Call(RF), to reformat the data. To(DCI).

S (DI) #*sr Display frame image. Periodically sample the external
devices, and format any inputs., Exit a:char when a character is found.

6 (CL) #*sr Look up commard in table of valid commands. Record
the index of the entry if found. Set a:o if not found.

15 (RF) *sr Reformat data.

FIG. 4 LINKED-STATEMENT REPRESENTATION: MAIN EXECUTIVE ROUTINE

26

SECTIQN III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

5b (D1}

5¢ (DIA)

DISPLAY FRAME
IMAGE, ONE LINE
AT A TIME

54 (DIG)

WAIT IN ENDLESS
LOOP UNTIL SYNCH
INTERRUPT, TO
TRANSFER CONTROL
TO 30!

Se (301)

SAMPLE EXTERNAL
DEVICES AND
FORMAT ANY INPUTS

5f (DIH)

CHARACTER
FOUND IN
SAMPLING?

5a (DIX)

C RETURN A:CHAR)

FIG. 5 GRAPHICAL REPRESENTATION: DISPLAY FRAME IMAGE SUBROUTINE

Ta-4887-3

27

SECTION III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

S (DI) #*sr Display frame image. Periocdically sample the external
devices, and format any inputs. EXIT a:char when a character is fourd.

Sa (DIX) Exit *o
DIX JFI 1

S (DI) Entry *o
DI 0

Se (DIA) Display frame image, one line at a time.

54 (DIG) Wait in endless loop until synch interrupt occurs,
to transfer control to(30I)., *o

DIG CIL
LDN 0
ZJR DIG
CON 31
JFI 1
301
PRG

Se (30I) Sample external devices, and format any inputs.

Sf (DIH) If a character was found in sampling, EXIT a:char.

Otherwise, to(DIA)., *o
DIH ZJR DIA

NZR DIX

FIG. 6 LINKED-STATEMENT REPRESENTATION: DISPLAY FRAME IMAGE SUBROUTINE

28

SECTION III1 -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

=

5¢) (DIA)

INITIALIZE OUTPUT
PARAMETERS TO
FRAME -IMAGE
START ADDRESS

5¢2

OBTAIN LINE-
IMAGE ~LENGTH
BUFFER START

ADDRESS

5¢3 (DIB)
OBTAIN NEXT 10
LINE LENGTH 5b
FROM BUFFER (DIG)

MORE LINES?

5¢5

SET NEW
LWA = OLD
LWA + LINE LENGTH

5¢6

SELECT DISPLAY
AND OUTPUT
IMAGE

S¢7

SET FWA TO

OLD LWA. STEP
yi LINE-LENGTH
BUFFER POSITION

TA-4907-4

FIG. 7 GRAPHICAL REPRESENTATION: DISPLAY FRAME IMAGE ONE LINE AT A TIME
(Part of Display Frame image Subrautine)

29

SECTION II1 -~ PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

Sc (DIA) Display frame image, one line at a time.

Scl (DIA) Initialize output parameters to
frame~-image start address. *o

DIA LDD CDB3 DISPLAY IMAGE START ADDRESS
STF DIE FWA
STF DIF IWA PLUS 1
Sc2 Obtain line-image-length buffer start address. *o
LDD CDB2 LINE IMAGE LENGTH BUFFER START
STF DIC
S¢3 (DIB) Obtain next line length from buffer. *o
DIB IDT
DIC 0
Sc4 If no more lines (O line length), to(DIG). *o
ZJF DIG
5¢5 Set new LWA to old LWA plus line length. *o
RAF DIE
5¢8 Select display, and output image. *o
DID EXC EXCSWR
our DIF
DIE 0 LWA OF IMAGE
S5c7 Set FWA to current LWA, Step line-length buffer
position. To(DIB), to display next line. %o
TF DIF
AOD DIC
NZR DIB
ZJB DIB
DI FWA

FIG.8 LINKED-STATEMENT REPRESENTATION DISPLAY FRAME IMAGE ONE LINE
AT A TIME (Part of Display Frame Image Subroutine)

30

SECTION II1I -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

SAMPLE
POSITION
ENCODER

17

DISPLAY
m BUG-MARKS R

18
DISPLAY COMMAND
STATUS INDICATORS RETURN

DCs
19
PUSH BUTTONS

20

SAMPLE AND
KEYBOARD

21

FORMAT CHARACTER
FOR DISPLAY RETURN

AND SAVE IT

EXIT A:CHAR
(EXIT A:0)

RA-4987-8

FIG. 9 GRAPHICAL REPRESENTATION: SAMPLE EXTERNAL DEVICES AND FORMAT
ANY INPUTS (Part of Display Frame Image Subroutine)

31

SECTION III -- PROGRAM-DESIGN RECORDS
PART B -- EXAMPLES

Se

PJR

JPR

30BI JPR

JPR

JPR

NZR

NZR
JFI

30KI JPR

(30I) Semple external devices, and formet any inputs,

Sel (30I) If system is not in "bug" mode,
to(30BI). *o

ATDMOD

30BI

Se2 (all(BF), to sample the position-encoder and
convert input (bug-mark position) to internal
coordinates. *o

BF

5e3 (30BI) Call(BD), to display current bug marks.
BD

Se4 (a11(DCS), to display current command status
indicators. *o
DCS

55 ®11(PBS), to sample external pushbuttons and
encode any input present, *o
PBS

Se6 If input is present, to(30KI). *o
30KT

57 (all(TIS), to sample keyboard and encode any
input present. *o
TIS

5¢8 If no input present, EXIT a:o ¥*o
SO0KI
1

DIH

59 (30KI) Call(TI), to format character for
d1isplay am save it, EXIT a:char. *o

TI

1

DIH

16 (BF) *sr Sample the position-encoder, convert input (bug-mark
position) to internal coordinates, and update the current bug-mark data.

17 (BD) #*sr Display current bug-marks,

21 (TI) *sr Format character for display, and save it.

*0

FIG. 10 LINKED-STATEMENT REPRESENTATION: SAMPLE EXTERNAL DEVICES
AND FORMAT ANY INPUTS (Part of Display Frame Image Subroutine)

32

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

1 SCOPE

la Both our off-line and our on-line systems may be used to
compose and modify the linked-statement structures (see
Ref(SRI1l) for deteiled descriptions of these two systems).

2 SUMMARY OF OFF-LINE SYSTEM USAGE AND FEATURES

2a Typed text, recorded on punched paper tape, is processed
off line by a program that recognizes instructions enbedded
in the text. These dircct the modification in structure or
content of any of the prior text.

2al The typist may introduce such instructions as needed
during the input typing.

242 Some of these instructions may modify or delete
other instructions.

2a3 The conventions for designating the instructions are
such that, from the printed copy, one can determine
unanmb iguously what is expected after computer processing.

2a4 After processing a cleaned-up hard copy, a printout
is provided, as well as a punched paper tape
representation,

2a5 The user may prepare a new input, referencing both
the previously processed material (in its final printout
state) and the earlier typing of this current input
material, to make modifications of either.

2a6 The paper tape from both this current typing amd the
previous computer outvut can be fed back through the
processor, to obtain a next cycle of updated printout and
Taper tape records.

2a7 In developing a body of material, cycling of this
kind can be done repeatedly.

Z2b The user has a variety of instructions that he can
employ:

2bl Insertion of a new statement anywhere in the

previous structure can be specified merely by giving it
the appropriate location number.

33

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

Z2bla No matter where a statement occurs in the input
text, the rrocessor will put it into 1ts proper
vosition as designated by its location number,

2blb Interpolative designations for the fields of
location numbers are permitted.

2blc For example, giving a statement a location
nutber 2a3.5 would designate that it is to be inserted
between Statements 2a3 and 2a4 of the existing
structure.

2b2 Simple statements may specify that any prior
statement is to be moved to a new insertion point.

2b3 Similarly, one may specify the deletion of any prior
statement (including one that represents an instruction).

Z2b4 The complete substructure of any statement that is
deleted or moved will sutomatically be deleted or moved
along with that statement.

20S Renunbering is automatically done by the processor,
so that the statements, as newly located within the
structure, have proper location nunbers without
interpolations.

Z2b6 One can designate new input to be appended to any
prior staterent, and in this new input embed directions
for the modification of that statement,

2bba This uses the Z-code conventlons described in
Ref(OSR2), allowing arbitrary insertion, deletion, or
replacement from freshly typed material or material
that has been cycled through the off-line system) may
be loaded onto the drum,

5 SUMMARY OF ON-LINE SYSTEM USAGE AND FEATURES

3a The user sits at the CRT console with the on-line
program operating and in control of the computer.

3al The paper tape record of any material (either
freshly typed material, or material that has been cycled
through the off-line system) may be loaded onto the drum,

3a2 The data thus stored in the drum can be scanned and
manipulated on the CRT display.

34

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

3a3 After such manipulation, the contents of the drum
my be punched out on paper tape for off-line printout
(Flexowriter) and for later input to either the on-line
or off-line system,

3a4 The drum full of data may also be transferred to a
storage block on magnetic tape.

3a4a An arbitrary number of such blocks mey be kept
on megnetic tape.

3b There are two types of processes available to the
on-line worker.

3bl Within the stracture contained in any given drum
load of data, he can do the following:

3bla Hop to any designated location nunber or named
statement.

3blb Scan up or down the lists of statements.

3ble Perform any of the basic operations of
inserting, deleting, replacing, moving, or copying on
any one of (or string of) the entities: chraracter,
word, line, or statement.

3bld Serd any statement ST1 to be inserted in front
of any other statement STZ in the structure, as
specified by either the location nurmber or name of
sT2.,

3ble Specify a new location nunber for a given
statement, and have the following statements
renunbered automatically.
3b2 Within the file of drum-load data blocks on magnetic
tape, the user can do the following (the blocks are filed
hy decimal serial number):

3b2a Go to to any block, by specifying the desired
block number.

3b2b Read the block into the drum.

3b2c Rewrite the block with the current drum
contents.

3b2d Go to the end of the file amd write the current
drum contents on the end of the file, as an added last

35

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

b lock.
4 RELATIVE MERITS OF OUR CURRENT ON-LINE AND QFF-LINE SYSTEMS

4a Either of the two text-manipulation systems can be used
exclusively, but there are special advantages to each in the
present states of development.

4b Straightforward modification of an existing structure is
more simply designated by the off-line techniques.

4bl One reason for this is the limitation in scanning in
the current on-line system.

4bla It is harder, when working over a large
structure, to keep oneself oriented.

4b2 When scanning some hard copy and recognizing a
change that is desired, it 1s simple to designate the
changes right on the spot, for the off-line system to
process,

4b3 A straightforward modification as designated by
off-line techniques is simple to specify--secretaries,
clerks, amd machine operators can do the rest of the
work,

4b4 In contrast, to make such a modification with the
on-line system currently requires signing up for the
rachine, loading the material, and trying to remember the
changes that were to be made.

4c When making extensive modifications with the off-line
system, it often becomes very difficult to picture the
structure as it has been newly specified so that further
additions and changes can be made. By contrast, when
working on-line, one may always view the structure in its
immediate, up-to-date state,

43 Which system one can use to best advantage generally
depends upon the state of one's work.

4d]1 Using the services of the off-line system during
first rough composition helps get the
statement-by-statement formulation generated in clean
form.,

4342 Local manipulations within a list ard within
statements are better done on line--during the
development of one's thinking, when many changes are

36

SECTION III -- PROGRAM-DESIGN RECORDS
PART C -- DESIGN AND MODIFICATION PROCEDURES

be ing made.

445 If changes are straightforward and a new view of the
modified structure is not needed immediately, the
off-line system serves best,

4e The aveilability and twrn-around times for these systems
establish how "current” one's working records may be,

4el At one extreme, constant availability of an on-line
system would permit all design work, including the
moment-by-moment "scratch-paper trials,” to be in the
general structured-statement form.

4e2 At the other extreme, a long turn-around time with
the off-line system would limit the utilization of
computer aids largely to an "after the fact"
documentation of detailed design work.

4e3 Even with a one-day turn-eround for the off-line
system, i1t seems feasible to keep the major share of our
system design records in a structured-statement form, and
to keep the records essentially up to date--with a
one-day lag in the availability of hard copy.

37

SECTION IIl1 -- PROGRAM-DESIGN RECORDS
PART D -- DISCUSSION

1 BASIC CONCEPTS

la The two main components to program-design techniques are
the form in which the design is recorded, and the
computer-aided processes for operating on that record.

b The particular form of the record is developed from the
basic list, name, link, and tag features of our
linked-statement conventions. The record is arbitrarily
expardable,

1bl There is a place for, or a way of tying in, every
kind of relevant informmtion--process steps, comments,
data, definitions, specifications, etec.

b2 Any character-string langusge can be used at any
level, including any forml (i.e., machine-translatable)
programming language. At higher levels in the structure,
above the programming language, free English or any
formmlly-defined language can be used.

b3 The form can be produced with a2 standard character
set on a printer or CRT display.

b4 The form itself is adaptable to future needs; the
way lists, names, links, and tags are used may be varied
for a wide range of structural forms.

b5 The nature of the form lemds itself to manipulation.

1b5a The computer processes may be neatly organized
and implemented,

1b5b The processes of the human user in conceiving
ard designating appropriate manipulation operations
are also helped by the form.,

IhSc With the stripping, translating, and debugging
improvements (discussed in Section V), this basic form
will be sultable for a designer to use for the vwhole
cycle of work from initial conceptualization through
final debugging.

1b5d The output from on-line processing is compatible
with the off-line system,

lc The processes for humn-directed manipulation of the
form may be either on-line or off-line.

38

SECTION III -- PROGRAM-DESIGN RECORDS
PART D -- DISCUSSION

lel On-line processes are fast enough so that the user
can keep within his unified design record all of the
notes and tentative design trials--moving, deleting, and
apperding so that the record reflects his
minute-by-minute progress.

lcz Off-line manipulation, although less immediately
responsive to the needs of the user, has the advantage of
being available to many more people than our real-time
work stations amd manipulating processes, The output of
the off-line system is compatible for use with the
on=line system.,

1¢S5 A computation center giving one to two runs per day
would allow updating processes that could keep much of
the design record in "current”" state. The on-line system
would surpass this most dramatically meinly in the aids
it would provide to the minute-by-minute type of work.

ADVANTAGES OF PROGRAM-DESIGN TECHNIQUES

2a The irmdividual programmer is given a new design
methodology for keeping notes, records, etc., in one uniform
structure, and for keeping these constantly in updated
"current” condition,

2al The programmer can work to depth in any one aspect;
when this aspect is under control, he can shift to some

other aspect and some other level without fear of losing
track of the state of his progress.

2a2 Temporary notes can be entered into the record and
deleted from it as needed, without either getting in the
vay or getting lost,

2a3 A new way of thinking is opened with this new
freedom to cut and try at any level or any stage of the
design.

2aZa Uniform ways of thinking and working are
augmented for every conceptual level in the design
problem, In the same way that the use of forml
program languages encourages more orderly thinking at
that level of the design, the conventions of form and
procedure throughout the rest of the design-record
structure encourage more general development of
orderly thinking.

2b A cooperating group of programmers gain similarly from

39

SECTION III -- PROGRAM-DESIGN RECORDS
PART D -- DISCUSSION

those technigues.

2bl Assume that each programmer is utilizing these
techniques and thus benefiting in his own work as
discussed above,

2b2 Commnications between individuals are much improved
if the working record of each has the completeness and
uniformity offered by these techniques.

2b3 The supervisor of such a group can use a completely
compatible record form anmd set of manipulation processes
for the design work at his level,

2b4 Under the supervisor's record form, the individual
record structures of each individual (which completely
describe his contribution) may be integrated within a
single comprehensive, uniform record.

2b5 This integration may be carried on up through an
arbitrary number of levels of supervisory control to
accommodate very large coordinated programming-system
designs.

2¢c The system, as a whole, gains a new form of
documentation.

2cl A form of "self-documenting"” system is realized; the
working records of the inmdividuals and groups provide
both the in-process documentation for their own use, and
a post-development documentation for others to use.

2cla With appropriate conventions and procedures for
maintaining the records during a design process,
little or no additional work should be required to
produce extremely good post-development documentation,

2c2 Subsequent maintenance or modification of the system
by others would be facilitated.

2c2a The record should be complete in every relevant
detail.

2c2b The organization and tagging of the record would
make it easy to locate necessary informmtion anmd to
gain the necessary comprehension reguired for
troubleshooting, or for evaluating modification
possibilities,

2c2c The manipulation processes allow flexible

40

SECTION III -- PROGRAM-DESIGN RECORDS
PART D -- DISCUSSION

modification for either minute or extensive changes.

3 COMPARISON OF THESE PROGRAM-DESIGN TECHNIQUES WITH
FLOW-CHARTING TECHNIQUES

3a A definite advantage to flow charts is the quicker
perception they provide of the "topology" of the process
flow. This advantage, however, mist be weighed against the
following edvantages of the linked-statement form:

3al The linked-statement form is easier to store anmd
menipulate in the computer and to portray on a display or
printer,

3a2 The linked-statement form does not provide any
recomposition problem as do flow charts when changes mst
be made.

Ja2a If the computer were asked to handle such
rearrangements in the flow chart, deriving and
implementing the processes for automatic arrangement
of a flow chart for easy comprehension would be
challenging.

32b An easy solution of this, of course, would be to
order the boxes ©of & flow chart in linear fashion
with arrows running up amd down the row; but this is
essentially the linked-statement form, with drawn-in
links (a possibility with which we may soon
experiment).

323 In a linked-statement record, the length of the
given statement may be arbitrary; whereas in a flow chart
the text within a box must often be overly abbreviated to
comply with geometric constraints.

324 A linked-statement record gives a more natural
inclusion of non-process information--e.g.,
specifications, usage pointers, data structure, comments,
rarameter states, and design tricks.

%5 In particular the many separate pieces of the record
will not tend to get misplaced or get in the way. For
instance, there are no separate flow charts, semarate
fragments of trial code, bits of data-structure,
synbol-assignment notes, subroutine-identification notes,

ete.

41

SECTION IV -- TASK MONITORING

1 INTRODUCTION

la An independent study conducted by our Systems
Engineering laboratory, working closely with
Informtion-Management personnel, examined our program's
aims and information needs in an attempt to identify
specific payoff areas for computer-aided information
management. Among the promising areas identified were:

lal Problem statement detailed in document form,
incluiing (where appropriate) an explicit coding
specification for programming to be done,

la2 Possibilities for algorithmic flowcharting.

1la3 A complete system-features description, including
operating instructions and user guides, maintained in an
up~to-date form,

la4 WVays of increasing the usefulness of our external
documentation citation files and references.

1a5 Ways of obtaining and hanmdling information sbout
currently assigned tasks, their progress ard
problems--"status information."

b The last of these was selected to serve as vehicle for
an intensive and detailed study leading to computer-aided
processing of status information. It was felt that this was
an acute neel of our own program's informetion system, and
should be of interest to a broader commmity as well.

Ibl We planned to implement a manual system of forms amd
procedures for status information and study this clsely,
seeing where computer aids could most usefully be
incorporated, and then implementing them in an on-line
system as soon as possible,

b2 This activity finally issued in two such schemes,
largely complementary in their functions, which were
corducted Jointly over a period of several months. These
are described in the following sections,
2 FIRST STATUS-REPORTING SCHEME
2a Rationale

2al The passage from a contemplated or planned task,

43

SECTION IV -- TASK MONITORING

into an assigned task on which work would begin, was
marked by 1ssuing a memo known as the "task description."
(Task-descriptions were issued at whatever time this
particular stage had been reached--they represented a
phase-cut in the process.)

2a2 Durng the implementation, "status reports'" marking
the progress against the defined tasks were issued at
regular time intervals. (Status reports represented
time-cuts in the process--whatever stage had been
reached,)

2a2a Stages of progress could be checked: e.g.,
design, coding, checkout, and final documentation, (in
the case of a programming task).

2a2b A given task might be either "active' or
"inactive" during a particular reporting period.

2a2c The reporting included an "estimted time to
completion," which could be revised weekly if
necessary.

2a2d There was provision for entering extra
comentary.

2a3 The completion of (for instance) a programming task
to the point where a new system feature had become
operational was announced by an "Op" memo ('"new feature
operational”); like the task description, this was a
phase-cut. This memo was issued even before final
documentation had been registered (though documentation
was considered a part of the assigned task).

2a4 With the "phase-cuts' of 2al amd 2a3, plus the
"time-cuts" of 2a2, we hoped to get an adequate
cross-sectioning of the process, which would reflect its
progress and temporal structure,

2b Implementation of the Scheme: Forms and Procedures

2bl The forms used in status-information recording were
memos extracted from our group-documentation files.
Headers were speclally preprinted; information content
was closely specified; and the documents were usually
highly formatted.

2bla. The "Task Description" memo told who had

assigned the task; which project within the program
was being charged; how long the task would prcbebly

14

SECTION IV -- TASK MONITORING

take; and the ma jor subtasks involved in completing
the task. Method of approach and any extra commentary
could also be recorded on this form. Thought and
planning, as well as write-up, were required in
issuing this docurent; it was not a simple checklist
operation,

2blb The "Status Report" memo, for registering
progress against defined and assigned tasks, was
issued to the reporter each week in an updated form,
Filling out this form usually required only entering a
nurber or letter, or checking a box, in order to
record progress to a new phase or subtask or to revise
a time estimate, If status information had not been
changed from the previous week's report, no action was
needed--excert to return the form. There was
provision for adding any extra commentary.

2blc The "Op" memo was extremely brief and highly
formatted--there was virtually nothing to write in,
except initials amd date., The header was prepared at
the time the task description was entered; at the
appropriste time--task completion to en operatioml
stage--this memo was initialed ard turned in.
Provision was made for adding comments.

Z2b2 Issuance and distribution of these forms was
procedurelly controlled:

2b2a Task Descriptions were to be entered before any
work wes begun on the task; coples went to all program
members, and to the master file.

2b2b Updated Status Report forms were distributed and
collected weekly. Coples were distributed only to the
Information-Management proJject personnel: the
originals were filed (available to any member of the
program), and used in preparing the next week's status
forms,

2b2c Op Memos were distributed immediamtely to all
program menbers, as well as being filed with the
corresponding task-description memo in the master
file.

2c Operation of the Scheme
2cl This system of status-information reporting was

instituted on a weekly basis, and operated for a periad
of 27 weeks,

45

SECTION IV -- TASK MONITORING

ed

2c2 Task descriptions were issued by each member of the
program at the time the scheme was initiated. During

most of the period of operation, two people participated
in the weekly reporting--though not always the same two.

2cd Most of the reporting concerned programming and
system-design tasks, 1.,e,, implementing system software
features. This yielded well-defined, naturally delimited
tasks., It also restricted the weekly reporting to Just a
few individwals (we wanted to try these ideas with a very
sm1l number of participants at first), and gave us
status information in an area where a real need was felt.

Results of Trial Operation

241 The most serious problem was that the information
conveyed by the status reporting proved to be of little
value, We attribute this to the fact that it was not
possible to formulate a task description realistically in
enough detail to make it a useful basis against which to
register one's progress. As a problem in managing
information, this took two forms:

2dla First, we needed ways of incorporating more
detail into the task descriptions; representing more
realistically the subtasks involved, and their complex
interrelations; amd displaying the relations to tasks
which others in the program might be working on
concurrently. This was a problem in representing and
structuring information usefully.

2dld Secondly, we needed easier and more flexible
ways of changing that task description--as the task
definition itself evolved into modified forms, anmd as
progress was made against 1t, This was a problem in
processing information usefully, and one which called
for computer help.

242 If our current structuring conventions and off-line
computer aids had been available at the time we began the
status reporting, we could have handled this problem more
satisfactorily; for they give us weys of representing
complex hierarchically-organized information, tegging and
labeling and linking it to bring out its qualitative
significance; and using computer processes to operate on
this organized information, madifying it and updating 1it.
These are Just the capabilities that were needed for a

46

SECTION IV -- TASK MONITORING

more reslistic scheme of reporting status information.

243 These off-line aids are just now getting to the
trustworthy stage. If we work up a second attempt at
status reporting, we have available a far more useful set
of tools, well adapted to the kind of informetion
problems we uncovered there. A logleal first move would
be to try framing complex task descriptions, tagged and
linked in ways that bring out the most significant
interdeperdencles; then to uce the associated off-line
computer processes to operate upon these and carry out
the modifications on them--madifications due both to the
changing nature of the task definition (for instance, as
new constraints come into view), and to the progress
marked up against the defined task.

3 SECOND STATUS-REPORTING SCHEME
3a Rationale

32l The second status-reporting scheme was concelved as
real-time reporting, with a "sign-on" when one sat down
to work and a "sign-off" when one completed it, left, or
was interrupted. The reporter would state, in his own
words, vhat he planned to do when he started working and
note what impediments (if any) were in the way of his
completing 1t when he left.

332 The format was designed specifically for on-line
use, as detailed below in 3bl; the same formt was also
used as the basis for a manually operated system , as
described in 3b3,

323 The goal was to make the whole process of reporting
as autommtic and natural as possible., Thus the report
was flexible in both its content and its timing; it was
entered whenever appropriate, with quick feedback of
information to supervisory personnel,

3a4 In particular, this scheme was to be a flag-setting
scheme, notifying of impediments or potential problems,

3 Implementation of the Scheme: Formats and Procedures

31l The autometic status-reporting format was intended
for on-line use as follows:

3bla When the system had been started up and the
on-line program had been loaded, the word "OPERATOR"
would appear on the screen, The operator would then
type in the required literal string (ID information),
followed by the delimiter,

47

SECTION 1V -- TASK MONITORING

required literal string (ID information), followed by the
delimiter.

3blb This delimiter would activate the command,
entering the literal string and bringing up the next
heading to the screen: "DATE."

3ble Each entry would bring up the next in this way,
until the sign-on part of the reporting had been
completed. (See the attached form, Figure 11.)

3bld When his work on line was completed, the
operator would type in a code for "sign-off" and the
words: "TIME OFF" would appear on the display.
Typing in the time plus the literal string delimiter
would then bring up the next item: "I ACCOMPLISHED,"
and finally, the item: "REMARKS," completing the
sign-off information.

3b2 This status data would be routed to the appropriste
parties:

3b2a The complete report, including both the sign-on
and sign-off information, wouwld be treated as a memo
to the project leader, program manager, and/or records
clerk, as appropriate.

3b2b Copies of the report would be routed to people
named or referenced by initials in the "REMARKS"
section; or alternatively, a "COPIES TO" entry could
be added to the sign-off formet, for designating
others not normally included in the status report
distribution.

33 For manual use, blank forms with the appropriate
head ings were distributed to group merbers,

3b%e The forms were kept very simple, to minimize the

chore of filling them out anmd maximize the probebility
that this would be done conscientiously.

3b3al Unnecessary entries were omitted completely.

3b3a2 Ample space and leeway were provided for the
researcher to include comments in his own words,
chosen without system constraint,

48

SECTION IV -- TASK MONITORING

OPERATOR:
DATE:
TIME ON:
PROJECT:
TASK:

I INTEND TO:

Sign-off entries should include the following: TIME OFF:

STATUS REPORT MEMORANDUM

1 ACCOMPLISHED:
REMARKS:

FIG. 11 SAMPLE OF STATUS REPORT MEMORANDUM FORM

49

SECTION IV -- TASK MONITORING

333 The "I ACCOMPLISHED" or "REMARKS" section of
the report could contain reference to any system
malfunction or limitation bearing upon completion
of the task, as well as to any organizational
problems.

3b3b Each person was to fill out the "sign-on"
section of the report as he sat down intemiing to put
in a significant amount of time on a glven task.

3b3c When he completed his objective, or before then
if he was interrupted, he would fill out the
"sign-off" section of the report.

33 Filling out of the forms was not to be postponed
and done ex post facto, for one obJjective was to
simulate the on-line situation and obtain some
feedback useful for on-line instrumentation.

3¢ Operation of the Scheme

3cl This secornd scheme of status iInformation reporting
was instituted in its manual (or off-line) form, and
comucted concurrently with the first scheme for a period
of about twelve weeks,

3¢c2 One member of the program, whose use of the forms
was very faithful, found that the timing varied from
several sign-on amd sign-off periods within the same dey
to several days on the same reported segment of work,

3c3 The filled-out forms were given to
Infornation-Management project personnel; they were
examined, armd occasionally brought to the attention of
the program manager before being filed, No problems were
flagged down by this means, however,

3d Results of Trial Operation

3d1 On-line imnlementation of this scheme would have
made a significant difference in its operation and
results; in fact, no falr and realistic evaluation of the
scheme can be mede without on-line experilence, for which
it was tailored. This 18 especially true in its method
of entering status information, aml of routing it

appropriately.
332 Because this type of report serves mainly a

"flagging" function, it does not rely explicitly upon an
adequate "task description,” as the first scheme did.

50

SECTION IV -- TASK MONITORING

That is, it does not need to face the problem of framing
an adequately representative and flexible task
description, yet it does presuppose existence of such a
description in the background in order to be maximally
effective ard yield significant information. When the
problem of task definition has been more satisfactorily
resolved, this second scheme of extracting status
information looks very promising, ard probably should
receive on-line implementation ard testing.

4 CONCLUSION

4a Our initial model for obtaining status information about
a programming process distinguished three points where
written information should be entered into the record: the
transition into the active phase, marked by a "Task
Description"; the "Status" reports at time intervals during
the implementation; amd an "after-the-fact" final
documentation,

4b One very serious oversimplification in this model is
that it overlooks the temporal interleaving of these phases;
they do not occur in any simple temporal sequence. Much of
the "final documentation'” is actually done during the
implementation stage; in fact, even the task definition is a
useful part of the complete documentation that might finally
be retained in the record.

4c Ideally, program documentation ard status information
about the programming should "fall out" as a natural product
of the methodology followed throughout the
design-ard~-programming process. This 1s one of the issues
at stake in the linked-statement design records described in
Section III.

41 We would like (ideally) to manage status information amd
documentation in ways that made them virtually
indistinguishable from the substantive work of design ami
programming--so interwoven in the programmer's methodology
that the documentation would be the very framework within
which he builds his work. This would not be a documentation
scheme which would "reflect" his substantive work; but
rather, a documentation which would "display" the current
(and evolving) state of his substantive work.

51

SECTION V -- FUTURE POSSIBILITIES

1 INTRODUCTION

la A new on-line computer system has been ordered. This
will have a general effect upon the course and scone of our
work.,

lal Delivery: 1 July 685.

la2 Central processor: CDC 3100; 8k by 24-bit, 1.75
usec core memory with three I/0 channels.

1la3 Peripheral equipment:
la3a Both paper tape and punched card I/0.
1la3b IBM 1311 disk file (2,000,000 characters).
la3c Two magnetic tape transports.
la3d Line printer.

la3e Straza character generator (arriving 1 April
65)--display scope ard on-line input terminals will be
the same as at present.

b We plan to incorporate both a list-processing and a
string-processing language facllity to work compatibly
within common programs.

le The on-line printer will meke a difference in both our
on-line and off-line text-manipulation systems,

lcl Immediate aveilability of selective printout for the
on-line worker offers interesting possibilities for
alding and expanding his working methodology.

lc2 We plan to implement the off-line text-manipulation
program, probably as the first program in the new system.
The improved accessibility will give us much quicker
recycling of our working text.

ld We plan to evolve time sharing in easy stages. The
first application would probably be to allow our off-line
text-manipulation processes to go on as interleaved
backgrourd work while the on-line system is being used.

2 PROGRAMMING METHODS

53

SECTION V -- FUTURE POSSIBILITIES

2a General Evolution from the Present State.

2al Our intended usage of the techniques described in
this report will stimulate a steady stream of new needs
and possibilities affecting conventions, style,
processes, and working methods.

2a2 We feel that such evolution could actively and
profitably be pursued for many months,

2ad3 For instance, we have only begun to explore the use
of links and tags. At a given point in a process design,
specifications, resources, constraints, etc.,, described
in other portions of the record, influence the design; it
would probably be valuable to install appropriate types
of links, to provide convenient records of the influence
of these factors.

Z2b Stripper-Translator

Zbl Embedding the actual source code within the design
record provides homogeneity in both the documentation and
the design process.

2b2 It would be wasteful to require a keypunch operator
to transcribe source code from this design record, so we
plan to develop a '"stripper" program to pull out the
source language in a form suitable for input to the
translator.

2b3 (Pl) *p Stripping Processor--A recursive subroutine
to strip out source code from the design-record structure
is relatively straightforward,

2b3a *c Directed at a process statement, this
subroutine will strip out, in appropriate order, all
of the source code in the list and its substructure.

Zb3al We assume OSAS source code in the
description below.

Zb3a2 STl is the head of the list and 1s given as
a parameter to this process,

2b3a3 Let ST2 be the current statement being
examined at any time by this processor.

2b3a4 Terminology as from Ref(SRIl): SBH ST2 is

the head statement of the sublist of statement STZ;
TAL ST1 is the tail statement of the list

54

SECTION V -- FUTURE POSSIBILITIES

containing statement ST1; and SCS ST2 is the
list-successor of statement ST2.

2b3 (Pl) Setup.
2b3bl ST2=STI1,
2b3c (P1ll) If ST2 has a *c tag, TO(P12),
2b3d If ST2 has an *o tag, TO(Pl3),
2b3e CALL(Pl) for SBH ST2.

2b3f (P1l3) Strip OSAS from asterisk to emd of
statement.

2b3g (Pl2) If ST2=TAL ST1, exit.
2b3h ST2=SCS ST2, TO(P1ll).

2c Cross Referencing between ObJect~-Code Listing and Design
Record

2cl Information contained in the design record would
often be valuable during debugging,

2c2 The listing amd the design record will contain the
same reference names,

2¢3 The computer can then aid in on-line cross
referencing as follows:

2cZa A modification of our on-line system would
ensble the user to scan and manipulate text in the
format of the obJect-code listing,

2¢® In this format, a machine eddress would become
the equivalent of a location nunber; a symbolic name
or label would become the equivalent of a statement
name,

2c3¢c Scan ad hop commands on location ard name would
thus be available over the obJect~code listing.

2c3d Cross-record processes could be developed that
would allow hopping from one record to & named
statement in another record, to provide effective
cross referencing,

2c4 More natural cross reference could be cbtained by a

55

SECTION V -- FUTURE POSSIBILITIES

slightly different arrangement--integrating the
translator output back into the design record.

2c4a A special link type (e.g., "*listing") could be
used to link from any statement containing an *o tag
(or other source-code tag) to the correspomding point
in the obJject-code listing.

2c4b Normel scanning of the record would show the
source code enbedded in the lowest levels of the
design record structure.

2c4c A special scanning mode would not show the
source code, but instead would automatically follow
the "*1isting" links to locate and show, as the lowest
level, the translated object code.

24 On-Line Executing and Debugging

2dl For completeness, these cross-reference aids should
be accompenied by the ability for the user to execute and
modify operating programs on line,

2d2 A natural operating system for this would allow the
user, when viewing the design record, to select a process
statement (at any level), stipulate the necessary entry
rerameters, armd have the appropriate section of code
executed.

2d2a Special aids would be available to help the user
establish the desired entry parameters.

2dcb If execution were normal, the resulting
parameter states could be displayed amd (if desired)
used as the input parameters for the next process
step.

2d2c If the process did not execute properly, the
user could drop down to the sublist of this process
statement and begin executing these statements, one at
a time, to isolate the trouble.

243 Special processes to aid on-line debugging, such as
help in establishing program patches, would be a natural
addition to the above aids.

244 *c Both of the above feature (statement execution
ard on-line patching) have previously been developed and
used in DDT--the on-line (typewriter) debugging aid for
the PDP series of computers.

56

SECTION V -- FUTURE POSSIBILITIES

245 On-line stripping, translating, and reintegration of
the obJject code are also important features to plan for.

2e We plan to develop our on-line system further along
these general lines.

Indexing and retrieval for our external documents,

3a In our original task breakiown, we had divided the
Information-management problems in our program into three

types:

3al A personal documentation system (PDOC) in which an
indi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>